

AUGI Training Program

Using the Windows API in VBA

Joe Sutphin
“A” Segment

Sponsored by:

Autodesk User Group International
AUGI Training Program (ATP)

This course (and every course you are registered for) will only continue
if you re-register for it after completing every segment. To do this (and
you can re-register for all the courses you're taking at one time for each
segment) use the ATP Registration webpage. It will be updated with each
segment (A, B, C, D and E) and you will need to re-register using it to
keep the courses you signed up for going this semester. No one is forcing
you to do this, but if you don't, your courses may get cancelled. It's
that simple.

If you have a question or comment about the content of any segment, we
encourage you to post a message to your course’s corresponding ATP Mail
List. Teachers moderate their class mail list and may take up to 2 days to
respond to questions you put to them. Proper use of any ATP Mail List is
outlined on the ATP Mail List web page. If you have a question or comment
about the ATP program in general, you can write to atpstaff@augi.com.
Please do not write to atpstaff@augi.com with questions about course
content unless there is a typo or a technical problem with a file.

You are welcome to publish the content of this or any ATP course segment
for the benefit of your Local User Group or co-workers so long as AUGI and
the course instructor receive full credit for generating it. The content
of this course may not be sold in any form and is copyrighted. This lesson
and other AUGI Training Program materials have been generated by the
faculty and staff of Autodesk User Group International, a non-profit user-
focused organization which depends on your participation.

Autodesk, the Autodesk logo, AutoCAD, 3D Studio MAX, Autodesk VIZ, AutoCAD
LT, Visual LISP and AutoLISP are registered trademarks of Autodesk, Inc.,
in the USA and/or other countries. AUGI is a servicemark of Autodesk,
Inc., licensed exclusively to the Autodesk User Group International.
Windows95, Windows98, Windows XP, Windows NT and Windows 2000, Visual
Basic, Microsoft Word, Microsoft Excel, and Microsoft Access are
trademarks of Microsoft Corporation. All other brand names, product names,
or trademarks belong to their respective holders. Copyright 2002 AUGI. All
rights reserved.

-The ATP Staff

ATP611A – “Using the Windows API in VBA”
Faculty: Joe Sutphin

In this session I will outline the basics of what is needed for you to
take advantage of the Windows API. While this is not a definitive guide to
the Windows API, it will give enough information to get you started
including some common examples such as the Open and SaveAs common dialogs.

Declares
Every Windows API function that you use must be declared, period! Why?
Because, there is no type library for your function calls to be resolved
against like those used in VBA. So, in order for them to be resolved (and
all function calls must be resolved) you have to declare each one before
you use it as the following illustration demonstrates

Public Declare Function SetForegroundWindow Lib "user32.dll" (ByVal hwnd As Long) As Long

The breakdown of the syntax is as follows:

[Scope] Declare Function <FunctionName> Lib <DLL Filename String> (List of Parameters) As <DataType>

The easiest way to get the declare is to use the API Text Viewer as
follows

Windows Data Structures
First of all, what is a data structure? Well, it is a collection of
related information that is accessible through a single variable name.
Data structures are widely used in the C (and some C++) language but for
modern programming practices has been replaced by classes. The major
difference being classes support the definition of functions that work on
the data of the class thus allowing the programmer to hide variables and

functionality from the outside world. On the other hand, data structures
are just that – data structures and nothing more. However, you’re in luck
because the Windows API has a ton of them such as the following

Public Type POINTS
 x As Integer
 y As Integer
End Type

DLL to Visual Basic Calling Conventions
To call DLL function procedures from Visual Basic you will need to convert
the C language syntax used to document them into valid Declare statements
that can be called from Visual Basic using the correct parameter data type
declarations.

The C data types must be converted into Visual Basic data types. Also, you
will need to specify whether the calling convention is ByVal [ByValue] or
ByRef [ByReference]. The following table illustrates the conversions for
32-bit Windows C language data types to Visual Basic.

C language data
type

Declare In Visual Basic
as

Call with

ATOM ByVal variable As
Integer

An expression that evaluates to an
Integer

BOOL ByVal variable As
Long

An expression that evaluates to a
Long

BYTE ByVal variable As
Byte

An expression that evaluates to a
Byte

CHAR ByVal variable As
Byte

An expression that evaluates to a
Byte

COLORREF ByVal variable As
Long

An expression that evaluates to a
Long

DWORD ByVal variable As
Long

An expression that evaluates to a
Long

HWND, HDC,
HMENU, etc.
(Windows
handles)

ByVal variable As
Long

An expression that evaluates to a
Long

INT, UINT ByVal variable As
Long

An expression that evaluates to a
Long

LONG ByVal variable As
Long

An expression that evaluates to a
Long

LPARAM ByVal variable As
Long

An expression that evaluates to a
Long

LPDWORD variable As Long An expression that evaluates to a
Long

LPINT, LPUINT variable As Long An expression that evaluates to a
Long

LPRECT variable As type Any variable of that user-defined
type

LPSTR, LPCSTR ByVal variable As
String

An expression that evaluates to a
String

LPVOID variable As Any Any variable (use ByVal when
passing a string)

LPWORD variable As Integer An expression that evaluates to an
Integer

LRESULT ByVal variable As
Long

An expression that evaluates to a
Long

NULL As Any or ByVal Nothing or ByVal 0& or
vbNullString

ByVal variable As
Long

SHORT ByVal variable As
Integer

An expression that evaluates to an
Integer

VOID Sub procedure Not applicable
WORD ByVal variable As

Integer
An expression that evaluates to an
Integer

WPARAM ByVal variable As
Long

An expression that evaluates to a
Long

Specifying the Library
Visual Basic knows where to find the .dll file that contains the
procedures by using the Lib clause in the Declare statement. When you are
declaring a function that uses one of the core Windows API libraries it is
necessary to specify the filename extension .dll. However, for consistency
I recommend you get in the habit as you will need to specify it for non-
core API libraries that you use.

Public Declare Function SetForegroundWindow Lib "user32.dll" (ByVal hwnd As Long) As Long

For non-core API libraries you may specify a path in the Lib clause. If a
path is not specified then Visual Basic will search for the file in the
following order

� Directory containing the .exe file
� Current directory
� Windows system directory (usually C:\Windows\System)
� Windows directory (usually C:\Windows)
� Path environment variable

The Major Windows DLL’s
The following is a table of the most commonly used libraries of Windows
API functions.

Advapi32.dll Advanced API services library

supporting numerous APIs including
many security and Registry calls

Comdlg32.dll Common dialog API library
Gdi32.dll Graphics Device Interface API library
Kernel32.dll Core Windows 32-bit base API support

Lz32.dll 32-bit compression routines
Mpr.dll Multiple Provider Router library
Netapi32.dll 32-bit Network API library

Shell32.dll 32-bit Shell API library
User32.dll Library for user interface routines
Version.dll Version library
Winmm.dll Windows multimedia library
Winspool.drv Print spooler interface that contains

the print spooler API calls

Working with Windows API Procedures that Use Strings
The “Alias” clause in your Declare statements is required when calling
Windows API procedures that use strings to specify the correct character
set. There are actually two formats for procedures that contain strings:
ANSI and Unicode.

For example, the SetWindowText function does not really exist but rather
there are two separate functions that you use depending on whether your
using ANSI or Unicode. The following illustrates the ANSI version

Private Declare Function SetWindowText Lib "user32" Alias "SetWindowTextA" (ByVal hwnd As Long, ByVal lpString As

String) As Long

Note that the string that follows the Alias clause must be the true, case-
sensitive name of the procedure.

You should specify the ANSI version of functions in Visual Basic because
the Unicode versions are supported in Windows NT only. Use Unicode for
those applications that you are certain will be running on Windows NT.

Passing Arguments by Value or by Reference
Visual Basic passes arguments by reference by default. Instead of passing
the actual value of the argument a 32-bit address specifying the location
of the value is passed. The ByRef keyword is not required however to make
your code more readable it would be prudent to specify the exact method of
passing the argument.

Many DLL procedures expect an argument to be passed by value. The function
is expecting to receive the actual value instead of its memory location.
If you pass the argument to the function using ByRef the function will be
receiving information that it has no idea had handle.

To pass an argument by value, place the ByVal keyword in front of the
argument declaration in the Declare statement. The InvertRect procedure
accepts its first argument by value and its second by reference as in the
following example

Declare Function InvertRect Lib "user32" Alias "InvertRectA" (ByVal hdc As Long, lpRect As RECT) As
Long

Note - When you're looking at DLL procedure documentation that uses C language syntax, remember that C
passes all arguments except arrays by value.

Learning By Example
This section will give you explicit examples of using the Windows API. The
best way to learn how to use the Windows API is to follow the examples of
others and try different situations on your own. These examples are some
of the most commonly Windows API functions for AutoCAD developers and
should provide you with enough information to pursue using the Windows API
functions in your own application development.

OpenFile Common Control Dialog
Using the OpenFile common control dialog will add a look of consistency to
your application design. The OpenFile dialog is part of the comdlg32.dll
library of Windows API routines and is easily accessed. The following
example illustrates using these routines to request a drawing file to
open.

Private Declare Function GetOpenFileName Lib "comdlg32.dll" Alias "GetOpenFileNameA" (pOpenfilename As
OPENFILENAME) As Long

Private Type OPENFILENAME
 lStructSize As Long
 hwndOwner As Long
 hInstance As Long
 lpstrFilter As String
 lpstrCustomFilter As String
 nMaxCustFilter As Long
 nFilterIndex As Long
 lpstrFile As String
 nMaxFile As Long
 lpstrFileTitle As String
 nMaxFileTitle As Long
 lpstrInitialDir As String
 lpstrTitle As String
 flags As Long
 nFileOffset As Integer
 nFileExtension As Integer
 lpstrDefExt As String
 lCustData As Long
 lpfnHook As Long
 lpTemplateName As String
End Type

Public Function ShowOpen(Filter As String, _
 InitialDir As String, _
 DialogTitle As String) As String

Dim OFName As OPENFILENAME

 'Set the structure size
 OFName.lStructSize = Len(OFName)
 'Set the owner window
 OFName.hwndOwner = 0
 'Set the filter
 OFName.lpstrFilter = Filter
 'Set the maximum number of chars
 OFName.nMaxFile = 255
 'Create a buffer
 OFName.lpstrFile = Space(254)
 'Create a buffer
 OFName.lpstrFileTitle = Space$(254)
 'Set the maximum number of chars
 OFName.nMaxFileTitle = 255
 'Set the initial directory
 OFName.lpstrInitialDir = InitialDir
 'Set the dialog title

 OFName.lpstrTitle = DialogTitle
 'no extra flags
 OFName.flags = 0
 'Show the 'Open File' dialog
 If GetOpenFileName(OFName) Then
 ShowOpen = Trim(OFName.lpstrFile)

 Else
 ShowOpen = ""
 End If
End Function

The following sample code illustrates using the ShowOpen routine that
returns the filename selected as a string.

Dim OFName As New CommonFileDialog
Dim Filter As String
Dim InitialDir As String
Dim DialogTitle As String
Dim ReturnFile As String

 Filter = "Drawing Files (*.dwg)" + Chr$(0) + "*.dwg" + Chr$(0) + "All Files (*.*)" + Chr$(0) + "*.*" + Chr$(0)
 InitialDir = "C:\Program Files\AutoCAD 2002\Sample"
 DialogTitle = "Open a DWG file"

 ReturnFile = OFName.ShowOpen(Me, Filter, InitialDir, DialogTitle)

The Filter parameter is a string that details what filetypes by extension
you want to display when the OpenFile dialog box is displayed. The
InitialDir parameter specifies which directory will be displayed by
default. You may choose to give a name to your OpenFile dialog box by
using the DialogTitle parameter.

With each of these parameters defined, executing this code will result in
the following OpenFile dialog box being displayed

SaveAs File Dialog
Using the SaveAsFile common control dialog will add a look of consistency
to your application design. The SaveAsFile dialog is part of the
comdlg32.dll library of Windows API routines and is easily accessed. The
following example illustrates using these routines to save a drawing file.

Private Declare Function GetSaveFileName Lib "comdlg32.dll" Alias "GetSaveFileNameA" (pOpenfilename As
OPENFILENAME) As Long

Public Function ShowSave(FormName As Form, _
 Filter As String, _
 InitialDir As String, _
 DialogTitle As String) As String

Dim OFName As OPENFILENAME

 'Set the structure size
 OFName.lStructSize = Len(OFName)
 'Set the owner window
 OFName.hwndOwner = 0
 'Set the filter
 OFName.lpstrFilter = Filter
 'Set the maximum number of chars
 OFName.nMaxFile = 255
 'Create a buffer
 OFName.lpstrFile = Space(254)
 'Create a buffer
 OFName.lpstrFileTitle = Space$(254)
 'Set the maximum number of chars
 OFName.nMaxFileTitle = 255
 'Set the initial directory
 OFName.lpstrInitialDir = InitialDir
 'Set the dialog title
 OFName.lpstrTitle = DialogTitle
 'no extra flags
 OFName.flags = 0
 'Show the 'SaveAs File' dialog
 If GetSaveFileName(OFName) Then
 ShowSave = Trim(OFName.lpstrFile)

 Else
 ShowSave = ""
 End If
End Function

The following sample code illustrates using the ShowSave routine.

Dim OFName As New CommonFileDialog
Dim Filter As String
Dim InitialDir As String
Dim DialogTitle As String
Dim ReturnFile As String

 Filter = "Drawing Files (*.dwg)" + Chr$(0) + "*.dwg" + Chr$(0) + "All Files (*.*)" + Chr$(0) + "*.*" + Chr$(0)
 InitialDir = "C:\Program Files\AutoCAD 2002\Sample"
 DialogTitle = "Save DWG as file"

 ReturnFile = OFName.ShowSave(Me, Filter, InitialDir, DialogTitle)

The Filter parameter is a string that details what filetypes by extension
you want to display when the SaveAsFile dialog box is displayed. The
InitialDir parameter specifies which directory will be displayed by
default. You may choose to give a name to your SaveAsFile dialog box by
using the DialogTitle parameter. Also, an initial or default filename may
be supplied using the InitialFile parameter.

With each of these parameters defined, executing this code will result in
the following SaveAsFile dialog box being displayed.

OK, well that was a lot of material. Digest it, study it but most of all,
try it! Next time we’ll something equally useful.

	Declares
	Windows Data Structures
	DLL to Visual Basic Calling Conventions
	
	C language data type
	Declare In Visual Basic as
	Call with

	Specifying the Library
	The Major Windows DLL’s
	Working with Windows API Procedures that Use Strings
	Passing Arguments by Value or by Reference
	Learning By Example
	OpenFile Common Control Dialog
	SaveAs File Dialog

