Гуманитарный издательский центр Владос, Москва 1998
Александр Архипович Ивин и Александр Леонидович Никифоров
Словарь по логике
ПАРАДИГМА (от греч. paradeigma — пример, образец)
 — совокуп­ность теоретических и методологических положений, принятых на­учным сообществом на известном этапе развития науки и исполь­зуемых в качестве образца, модели, стандарта для научного исследо­вания, интерпретации, оценки и систематизации научных данных, для осмысления гипотез и решения задач, возникающих в процессе научного познания. Неизбежные в ходе научного познания затрудне­ния то или иное сообщество ученых стремится разрешать в рамках принятой им парадигмы. Так, в свое время ученые стремились интер­претировать новые эмпирические данные науки в рамках механисти­ческого мировоззрения, абсолютизировавшего представления класси­ческой механики, представлявшего собой некоторую П. Революцион­ные сдвиги в развитии науки связаны с изменением П.
ПАРАДОКС (греч. paradoxos)
 — в широком смысле: утверждение, резко расходящееся с общепринятыми, устоявшимися мнениями, от­рицание того, что представляется "безусловно правильным"; в более узком смысле — два противоположных утверждения, для каждого из которых имеются убедительные аргументы.
Парадоксальны в широком смысле афоризмы, подобные "Люди жестоки, но человек добр", любые мнения и суждения, противостоя­щие общеизвестному, "ортодоксальному". Парадоксальным казался в свое время закон всемирного тяготения И.Ньютона, объединявший такие разные виды движения, как падение яблока и движение пла­нет по орбитам. Несомненный оттенок П. имела и волновая теория света, утверждавшая, что в центре тени, отбрасываемой небольшим непрозрачным диском, должно быть светлое пятно.
Ускорение процесса развития науки привело к тому, что пара­доксальность стала одной из характерных черт современного науч-


[263]
ного познания. Если еще сто лет назад П. воспринимался как досад­ное препятствие на пути познания, то сейчас стало ясно, что наибо­лее глубокие и сложные проблемы нередко встают в остропарадок­сальной форме.
Особую роль П. играют в логике. Они свидетельствуют о том, что привычные приемы теоретического мышления сами по себе не обес­печивают надежного продвижения к истине. П. можно рассматривать как критику логики в ее наивной, интуитивной форме.
П. играют роль фактора, контролирующего и ставящего ограниче­ния на пути конструирования логических систем. И здесь их можно сравнить с экспериментом, проверяющим правильность систем та­ких наук, как, скажем, физика и химия, и заставляющих вносить в
них изменения.
П. в логической теории говорит о несовместимости допущений, лежащих в ее основе. Он выступает как своевременно обнаружен­ный симптом болезни, без которого последнюю можно было бы долгое время не замечать.
Наиболее известную и сложную группу П. составляют антино­мии. В их числе: антиномия "лжеца" П., антиномия Рассела, антино­мия Греллинга — Нельсона и др.
Несколько особняком стоит знаменитый П. "Протагор и Еватл" и такие его версии, как "Крокодил и мать", "Санчо Панса" и др. По преданию, философ-софист Протагор (V в. до н.э.) заключил со своим учеником Еватлом договор: Еватл, обучавшийся праву, должен заплатить за обучение лишь в том случае, если выиграет свой первый судебный процесс. Закончив обучение, Еватл не стал, однако, участво­вать в процессах. Протагор подал на него в суд, аргументируя свое требование таким образом: "Каким бы ни был результат суда, Еватл должен будет заплатить. Он либо выиграет этот свой первый процесс, либо проиграет. Если выиграет, то заплатит в силу заключенного до­говора. Если проиграет, заплатит согласно решению суда". На это Еватл ответил: "Если я выиграю, решение суда освободит меня от обязан­ности платить. Если суд будет не в мою пользу, это будет означать, что я проиграл свой первый процесс и не заплачу в силу договора".
Если под решением данного спора понимать ответ на вопрос, дол­жен Еватл уплатить Протагору или нет, то очевидно, что спор неразре­шим. Договор учителя и ученика внутренне противоречив и требует реализации логически невозможного положения: Еватл должен од­новременно и уплатить за обучение, и вместе с тем не платить.
Антиномии и подобные им П. являются рассуждениями, итог ко­торых - противоречие. В логике известны и многие другие типы П. Они также указывают на какие-то затруднения и проблемы, но де­лают это в менее резкой форме. Особый интерес среди них пред-


 
[264]
ставляют П. неточных, или размытых, имен. В этом случае не ясно, какие именно предметы подпадают под то или иное название, а какие нет (см.: Неточность).
Анализ П. способствовал прояснению оснований логики, совер­шенствованию конкретных ее теорий. Что касается центральных ло­гических антиномий, то в логике найдены достаточно эффективные методы их устранения. Пока не открыто ни одного П., для которого не было бы найдено никакого решения.
ПАРАДОКСЫ ИМПЛИКАЦИИ
 — доказуемые в логике классичес­кой и некоторых других логических системах утверждения с импли­кацией, плохо согласующиеся с обычным пониманием условной связи ("если ..., то ...") и логического следования. П. и. — это пара­доксы в широком смысле, их наличие не свидетельствует о внут­ренней противоречивости соответствующих логических теорий, но указывает на определенное рассогласование последних с привыч­ными, или интуитивными, представлениями о логических связях.
Условные высказывания, формулируемые обычно с помощью союза "если, то", играют важную роль и в повседневных, и в научных рассуждениях. Эти высказывания выполняют много разных задач, но типичная их функция, особенно в науке, — обоснование одних утверждений ссылкой на другие. Например, ковкость железа можно обо­сновать, ссылаясь на то, что оно металл: "Если железо металл, оно является ковким".
В классической логике условные высказывания представляются с помощью импликации материальной. Она считается ложной толь­ко в случае, когда ее основание истинно, а следствие ложно. Она истинна, в частности, когда соединяемые ею высказывания являются ложными ("Если Земля — куб, то Марс — треугольник") или осно­вание ее ложно, а следствие истинно ("Если Юпитер обитаем, он не является обитаемым"). В обычном условном высказывании его части связаны между собой по содержанию. Материальная импликация не предполагает содержательной, смысловой связи соединяемых ею выс­казываний. Если даже они не имеют ничего общего друг с другом, составленная из них импликация может быть истинной ("Если у собаки есть хвост, то у тритона четыре ноги").
Особенностями материальной импликации обусловлено то, что ею плохо передается основная функция условной связи — функция обоснования. На это и указывает П. и. Поскольку речь идет о такой довольно неопределенной вещи, как "несогласие с интуицией", круг парадоксов материальной импликации четко не ограничен. Но в него всегда включаются парадокс истинного высказы­вания и парадокс ложного высказывания.


[265]
Согласно первому истинное высказывание может быть обосно­вано с помощью любого высказывания. Это соответствует закону логики классической, который передается так: истинное высказыва­ние имплицируется каждым высказыванием. Допустимым будет та­кое "обоснование": "Если Наполеон не был сапожником, то "Гео­метрия" Евклида написана не им". Вряд ли, однако, разумно утвер­ждать, что, поставив перед истинным высказыванием произвольное утверждение, мы обосновали данное высказывание.
Если установлено, что какое-то высказывание истинно, то в опре­деленных пределах действительно безразлично, из каких положений оно получено. Но такое допущение классической логики не согласу­ется с представлениями о научной теории. Она является не механи­ческим набором истинных высказываний, а системой, в которой ут­верждения находятся в известных отношениях друг с другом и мо­гут обосновываться путем выведения их из вполне определенных утверждений. Едва ли имеет смысл, например, заключение, что классичес­кая механика Ньютона обосновывается ссылкой на то, что Север­ный полюс отличается от Южного, а множество арифметических истин — ссылкой на реакции, идущие в недрах Солнца.
Согласно парадоксу ложного высказывания (см.: Закон Дунса Скота), ложное высказывание имплицирует любое высказывание. Так, высказывание "Если медь неэлектропроводна, то электрон де­лим до бесконечности" должно рассматриваться как истинное.
Данный парадокс является своеобразным предостережением про­тив принятия ложного высказывания. Введение в научную теорию такого высказывания ведет к разрушительным последствиям: в ней становится возможным обосновать все что угодно, и она теряет вся­кий смысл. Это предостережение является, несомненно, важным. Но не очевидно, что оно должно включаться в класс правил логическо­го следования, обоснованность которых зависит только от структуры входящих в них высказываний, но не от того, истинны они или ложны.
Таким образом, логика классическая с ее материальной имплика­цией не может быть признана удачным описанием условной связи, а значит, и логического следования.
Впервые на парадоксы материальной импликации обратил вни­мание амер. философ и логик К. И. Льюис (1883-1964). Он пред­ложил взамен классической логики новую теорию логического следования, в которой материальная импликация замещалась дру­гой условной связью - строгой импликацией. Это было большим шагом вперед, хотя и оказалось, что строгая импликация тоже не лишена собственных парадоксов. В их числе аналог парадокса


[266]
истинного высказывания: логически необходимое высказывание вытекает из любого высказывания; и аналог парадокса ложного высказывания: из логически невозможного высказывания вытекает какое угодно высказывание.
Более удовлетворительное описание условной связи и логичес­кого следования было дано в 50-е годы В. Аккерманом, А. Андерсо­ном и Н. Белнапом. Им удалось исключить не только парадоксы материальной импликации, но и парадоксы строгой импликации. Введенная ими непарадоксальная импликация получила название релевантной (т.е. уместной), поскольку ею могли связываться только высказывания, имеющие какое-то общее содержание.
ПАРАЛОГИЗМ (от греч. paralogismos — неправильное, ложное рассуждение)
 — непреднамеренная логическая ошибка, связанная с нарушением законов и правил логики. П. следует отличать от со­физма — ошибки, совершаемой намеренно, с целью ввести в заб­луждение оппонента, обосновать ложное утверждение и т.п. (см.: Ошибка логическая).
ПАРАНЕПРОТИВОРЕЧИВАЯ ЛОГИКА
 - логика, не позволяю­щая выводить из противоречия произвольное предложение. В логике классической некоторая теория называется противоречивой, когда в ней можно доказать одновременно и предложение, и его отрицание. Если при этом в теории можно доказать и произвольное предложение, она называется тривиальной.
П. л. трактует противоречие иначе, чем классическая логика. Ис­ключается возможность выводить из противоречий любые предло­жения, противоречие перестает быть угрозой разрушения теории. Этим не устраняется, конечно, принципиальная необходимость избав­ляться от противоречий в ходе дальнейшего развития теории.
Такой подход к противоречию сложился относительно недавно. В конце 40-х годов польским логиком С. Яськовским (1906—1965) была построена "логика дискуссии", не позволяющая выводить из противоречия произвольные предложения. Более совершенная вер­сия П. л. была предложена позднее бразильским логиком Н. да Костой. Паранепротиворечивой является также релевантная логика, в которой новая трактовка противоречия оказалась естественным след­ствием решения другой задачи — более адекватной, чем в классичес­кой логике, формализации условного высказывания.
О новом отношении к противоречию и возможности логики без непротиворечия закона еще в начале этого века говорили рус. логик Н. А. Васильев (1880-1940) и польский логик Я. Лукасевич (1878-1956).
ПЕРЕМЕННАЯ
 - а) П. величина, которая может принимать в процессе своего изменения различные значения; б) неопределенное
[267]
имя предмета из некоторой области значений этой П., вместо кото­рого могут подставляться имена предметов этой области. П. величи­на характеризуется тем, что относит к значениям одной (независи­мой) П. величины значения другой П. величины, зависящей от пер­вой (см.: Функция). С такими П. величинами мы встречаемся в формулах математики (например, у=х2), физики (f = т*а) и др. В логи­ке и математике мы встречаемся и с понятием П. в смысле (б). В этих случаях П. играет роль неопределенного (родового) имени, буквы, вместо которых производится соответствующая подстановка. Иног­да говорят, что в таких случаях П. есть "пустое место" в формуле, снабженное указанием, какого рода конкретные предметы (точнее — их имена) могут быть подставлены на это пустое место. Так, в выражении (х+у)2=х2+2ху+у2 П. х и у выполняют роль таких П., вместо которых можно подставлять различные числа. Идея зависи­мости между П. здесь отсутствует. Аналогично в формуле х>у, вы­ражающей в логике пропозициональную функцию, П. х и у исполь­зуются в значении (б), а именно как "пустые места".

ПЕРЕСЕЧЕНИЕ КЛАССОВ (МНОЖЕСТВ)
 - логическая опера­ция по нахождению общих для класса (множества) элементов. Так, П. к. студентов (A) и спортсменов (В) будет класс тех студентов, которые одновременно являются спортсменами. Результат может быть представлен в виде двух пересекающихся кругов (см. рис.), где заштрихованная часть будет представлять множество студентов, яв­ляющихся одновременно спортсмена­ми (см.: Множеств теория). В логике чаще говорят не о П. к., а о пересече­нии понятий. При этом имеется в виду операция нахождения общей части объема понятий.
ПОДМЕНА ТЕЗИСА (лат. ignoratio elenchi)
 — логическая ошибка в доказательстве, состоящая в том, что начав доказывать некоторый тезис, постепенно в ходе доказательства переходят к доказательству другого положения, сходного с тезисом. При этом происходит на­рушение закона тождества по отношению к тезису: тезис на всем протяжении доказательства должен оставаться одним и тем же. Опасность этой ошибки заключается в том, что благодаря сходству доказанного положения с тезисом создается иллюзия о доказаннос­ти именно тезиса. Например. доказывая положение "Н. невиновен", при­водят следующие аргументы: "Н. - хороший семьянин", "Н. — пере­довик производства" и т.п. Из этих аргументов вытекает вывод, что Н. - хороший человек. Но этот вывод не тождествен доказываемому тезису. Налицо подмена. П. т. часто совершается при опровержении, когда опровержение положения, лишь внешне сходного с тезисом,


 
[268]
выдают за опровержение самого тезиса или опровержение одного из аргументов (или демонстрации) рассматривают как опровержение тезиса.
Тезис в процессе доказательства можно изменять. Иногда, дока­зывая некоторое положение, мы осознаем, что оно не совсем верно и нужно доказывать другое положение. В таком случае следует прямо сказать об этом, отказаться от ранее выставленного тезиса и сфор­мулировать новый тезис и после этого продолжить доказательство уже нового тезиса.
ПОДТВЕРЖДЕНИЕ
 — соответствие теории, закона, гипотезы некоторому факту или экспериментальному результату. В методоло­гии научного познания П. рассматривается как один из критериев истинности теории или закона. Для того чтобы установить, соответ­ствует ли теория действительности, т.е. верна ли она, из нее дедуци­руют предложение, говорящее о наблюдаемых или эксперименталь­но обнаруживаемых явлениях. Затем проводят наблюдения или ста­вят эксперимент, устанавливая истинность или ложность данного предложения. Если оно истинно, то это считается П. теории. Например, обнаружение химических элементов, предсказанных Д. И. Менделе­евым на основе его таблицы, было П. этой таблицы; обнаружение планеты Уран в месте, вычисленном согласно уравнениям небесной механики Ньютона, было П. механики и т.п. С логической точки зрения процедура П. описывается следующим образом. Пусть Т~ проверяемая теория, A — эмпирическое следствие этой теории, связь между Т и А может быть выражена условным суждением "Если Т, то A". В процессе проверки обнаруживается, что A истинно; делается вывод о том, что Т подтверждена. Схема рассуждения выглядит следующим образом:
Если Т, то A.
A.
Т.
Такой вывод не дает достоверного заключения, поэтому на основа­нии истинности A мы не можем заключить, что теория Т также истинна, и говорим лишь, что теория Т подтверждена. Чем больше проверенных истинных следствий имеет теория, тем в большей сте­пени она считается подтвержденной.
Следует иметь в виду, однако, что П. никогда не может быть полным и окончательным, т.е. сколько бы П. ни получила теория, мы не сможем утверждать, что она истинна. Число возможных эмпири­ческих следствий теории бесконечно, мы же можем проверить лишь


[269]
конечное их число. Поэтому всегда сохраняется возможность того, что однажды предсказание теории окажется ложным. Например, утвер­ждение "Все лебеди белы" в течение столетий подтверждалось сот­нями и тысячами примеров, но однажды людям встретился черный лебедь и обнаружилось, что это утверждение ложно. Это говорит о том, что подтверждаемость некоторой теории еще не позволяет нам с уверенностью сказать, что теория истинна. Ложная теория может в течение длительного времени находить П.
ПОЗНАНИЕ
 — высшая форма отражения объективной действи­тельности, процесс выработки истинных знаний. Первоначально П. представляло собой одну из сторон практической деятельности лю­дей, постепенно в ходе исторического развития человечества П. стало особой деятельностью.
В П. выделяют два уровня: чувственное П., осуществляемое с помощью ощущения, восприятия, представления, и рациональное П., протекающее в понятиях, суждениях, умозаключениях и фиксируемое в теориях. Различают также обыденное, художе­ственное и научное П., а в рамках последнего — П. природы и П. общества. Различные стороны процесса П. исследуются рядом спе­циальных наук: когнитивной психологией, историей науки, социо­логией науки и т.п. Общее учение о П. дает философская теория П.
ПОЛЕМИКА
 - разновидность спора, отличающаяся тем, что ос­новные усилия спорящих сторон направлены на утверждение своей точки зрения по обсуждаемому вопросу.
Наряду с дискуссией, П. является одной из наиболее распростра­ненных форм спора. С дискуссией ее сближает наличие достаточно определенного тезиса, выступающего предметом разногласий, из­вестная содержательная связность, предполагающая внимание к аргументам противной стороны, очередность выступлений споря­щих, некоторая ограниченность приемов, с помощью которых оп­ровергается противная сторона и обосновывается собственная точ­ка зрения.
Вместе с тем П. существенно отличается от дискуссии. Если целью дискуссии являются прежде всего поиски общего согласия, того, что объединяет разные точки зрения, то основная задача П. — утвержде­ние одной из противостоящих позиций. Полемизирующие стороны менее, чем в дискуссии, ограничены в выборе средств спора, его стратегии и тактики. В П., как и в споре вообще, недопустимы не­корректные приемы (подмена тезиса, аргумент к силе или к неве­жеству, использование ложных и недоказанных аргументов и т.п.). В П. может применяться гораздо более широкий, чем в дискуссии, спектр корректных приемов. Большое значение имеют, в частности,


 
[270]
инициатива, навязывание своего сценария обсуждения темы, вне­запность в использовании доводов, выбор наиболее удачного вре­мени для изложения решающих аргументов и т.п.
Хотя П. и направлена по преимуществу на утверждение своей позиции, нужно постоянно помнить, что главным в споре является достижение истины. Победа ошибочной точки зрения, добытая бла­годаря уловкам и слабости другой стороны, как правило, недолговеч­на, и она не способна принести моральное удовлетворение.
ПОЛНОТА (в логике и дедуктивных науках)
 — логико-методо­логическое требование, предъявляемое к аксиоматической теории и характеризующее достаточность для определенных целей ее вырази­тельных и дедуктивных средств. Аксиоматическая система является полной, если все ее формулы, истинные при рассматриваемой интер­претации, доказуемы. Полная система содержит все возможные тео­ремы, не противоречащие интерпретации. Для уточнения семанти­ческого понимания П. может быть выдвинуто требование, чтобы либо само предложение, либо его отрицание было теоремой, т.е. чтобы предложение было или доказуемо, или опровержимо.
А 1931 г. К. Гёдель показал, что достаточно богатые аксиоматичес­кие системы (включающие арифметику натуральных чисел) в прин­ципе не могут быть полными: в них имеются предложения, которые не могут быть ни доказаны ни опровергнуты.
Требование П. не является необходимым; неполные аксиомати­ческие системы могут представлять и теоретический, и практичес­кий интерес.
ПОНИМАНИЕ
 — универсальная операция мышления, связанная с усвоением нового содержания, включением его в систему устояв­шихся идей и представлений. П. наделяет смыслом объекты социаль­но-культурной и природной реальности и вводит их тем самым в привычный и связный мир человека. Оно всегда обусловлено соци­ально-историческими и культурными предпосылками. Уяснение смысла объекта как целого предполагает П. его частей; в свою оче­редь, уяснение смысла частей требует П. смысла целого (т.наз. "гер­меневтический круг").
Теория и искусство истолкования, и прежде всего истолкования текста, именуется герменевтикой (от греч. hermeneuo — разъяс­няю). Как особая отрасль знания она начала складываться еще в по­здней античности. В ср. века некоторые проблемы герменевтики разра­батывались в рамках толкования священного писания (экзегетики).
П. является той точкой, в которой пересекаются все проблемы такого сложного и многоаспектного явления, как человеческая ком­муникация. Обыденность П., иллюзия легкой, почти автоматической


[271]
его достижимости долгое время затемняли его сложность и комп­лексный характер. Хотя эта проблема начала активно обсуждаться еще в XIX в., в полном объеме и во всей своей сложности она встала только в последние десятилетия.
Наряду с объяснением П. является одной из основных функций научного познания.
Логическая структура П. пока не особенно ясна, нередко предпо­лагается, что оно вообще лишено отчетливой структуры. Весьма рас­пространенной является восходящая к старой герменевтике идея, что истолковываться и пониматься может только текст, наделенный определенным смыслом: понять означает раскрыть смысл, вложен­ный в текст его автором. Узкая трактовка П., будучи приложенной к познанию природы, ведет к неясным рассуждениям о "книге бытия", которая должна "читаться" и "пониматься" подобно другим текстам. Поскольку у этой "книги" нет ни автора, ни зашифрованного смыс­ла, естественнонаучное П. оказывается П. лишь в некотором пере­носном, метафорическом значении.
Иногда П. истолковывается как неожиданное прозрение, внезап­ное ясное видение какого-то до тех пор бывшего довольно туман­ным и несвязным целого. Такое сведение П. к "озарению", "инсай­ту", или "прозрению", делает операцию П. редкостью не только в естественных, но и в гуманитарных науках.
Определенный интерес представляет концепция, утверждаю­щая, что П. есть оценка на основе некоторого образца, стандарта, нормы или принципа. Пониматься может все, для чего существует такой общий образец, начиная с явлений неживой природы и кончая поступками, индивидуальными психическими состояния­ми и текстами. Результатом П. является оценка понимаемого объекта с определенной устоявшейся точки зрения. Истолкование, де­лающее возможным П., представляет собой поиск стандарта оцен­ки и обоснование его приложимости к рассматриваемому конк­ретному случаю. Например, понять действие исторического лица зна­чит вывести обязательность этого действия из тех целей и ценностей, которых оно придерживалось ("В ситуации типа С сле­довало сделать х; деятель A находился в ситуации типа С; значит, деятель А должен был сделать х"). Поведение становится понят­ным, как только удается убедительно подвести его под некоторый общий принцип или образец; понятное в действиях человека — это отвечающее принятому правилу, а потому правильное и в определенном смысле ожидаемое. П. природы также является оцен­кой ее явлений с точки зрения того, что должно в ней происхо­дить, т.е. с позиции устоявшихся и опирающихся на прошлый


 
[272]
опыт познания представлений о "нормальном" или "естественном" ходе вещей.
ПОНЯТИЕ
 - общее имя, имеющее относительно ясное и устой­чивое содержание и сравнительно четко очерченный объем. П. явля­ются, например, "дом", "квадрат", "молекула", "кислород", "атом", "любовь", "бесконечный ряд" и т.п. Отчетливой границы между теми именами, которые можно назвать П., и теми, которые не относятся к П., не существует. "Атом" уже с античности является достаточно оформив­шимся П., в то время как "кислород" и "молекула" до XVIII в. вряд ли могли быть отнесены к П.
Имя "П." широко используется и в повседневном языке, и в языке науки. Однако в истолковании содержания этого имени един­ства мнений нет. В одних случаях под П. имеют в виду все имена, включая и единичные, и пустые. К П. относят не только "столицу" и "европейскую реку", но и "столицу Белоруссии" и "самую большую реку Европы". В других случаях П. понимается как общее имя, отра­жающее предметы и явления в их общих и существенных признаках. Иногда П. отождествляется с содержанием общего имени, со смыс­лом, стоящим за таким именем.
Термин "П." широко употреблялся в традиционной логике, кото­рая начинала с анализа П., затем переходила к исследованию сужде­ния, которое мыслилось составленным из П., и далее к описаниям умозаключения, составленного из суждений как более простых эле­ментов. В современной логике термины "П.", суждение и умозаключе­ние употребляются редко. Схема изложения логики "понятие -> суж­дение -> умозаключение" отброшена как устаревшая. Изложение со­временной логики начинается с логики высказываний, которая лежит в фундаменте всех иных логических систем и в которой простое высказывание не разлагается на составляющие его части.
ПОРОЧНЫЙ КРУГ
 — логическая ошибка в определении понятий и в доказательстве, суть которой заключается в том, что некоторое понятие определяется с помощью другого понятия, которое в свою очередь определяется через первое, или некоторый тезис доказывает­ся с помощью аргумента, истинность которого обосновывается с по­мощью доказываемого тезиса. Пример П. к. в определении: "Вращение есть движение вокруг собственной оси". Понятие "ось" само опреде­ляется через понятие "вращение" ("ось — прямая, вокруг которой происходит вращение"). Частным случаем П.к. в определении поня­тий могут быть тавтологии, например, "Демократ есть человек демократи­ческих убеждений". Примером П. к. в доказательстве могут служить многочисленные попытки математиков (до открытия Лобачевского) доказать независимость пятого постулата от других постулатов гео-


[273]
метрии Евклида, использовавших при этом в качестве аргументов положения, эквивалентные доказываемому пятому постулату.
"ПОСЛЕ ЭТОГО ЗНАЧИТ ПО ПРИЧИНЕ ЭТОГО" (лат. post hoc ergo propter hoc)
 — логическая ошибка, заключающаяся в том, что простую последовательность событий во времени принимают за их причинную связь. Например, когда после появления кометы возникали какие-то несчастья, часто комету считали причиной несчастья; когда в трубке возникала пустота и вода в ней поднималась, то думали, что пустота есть причина поднятия воды и т.д. Данная ошибка лежит в основе многочисленных суеверий, легко возникающих в результате соединения во времени двух событий, никак не связан­ных друг с другом.
ПОСПЕШНОЕ ОБОБЩЕНИЕ
 — логическая ошибка в индуктив­ном выводе. Суть ее заключается в том, что, рассмотрев несколько частных случаев из какого-либо класса явлений, делают вывод обо всем классе. Например: 1 — простое число, 2 — простое число, 3 — простое число; следовательно, все натуральные числа — простые. Ошибка П.о. особенно часто совершается в повседневной жизни, когда люди по одному-двум случаям судят о целом классе.
ПРАВИЛО ВЫВОДА
 — правило, определяющее переход от посы­лок к следствиям. П. в. указывает, каким образом высказывания, ис­тинность которых известна, могут быть видоизменены, чтобы полу­чить новые истинные высказывания. Например, правило отделе­ния устанавливает, что если истинны два высказывания, одно из которых имеет форму импликации, а другое является основанием (антецедентом) этой импликации, то и высказывание, являющееся следствием (консеквентом) импликации, истинно. Это правило, на­зываемое также правилом модус поненс, позволяет "отделить" след­ствие истинной импликации, при условии, что ее основание истинно. Скажем, от посылок "Если цирконий — металл, он электропроводен" и "Цирконий — металл" можно перейти к заключению "Цирконий электропроводен".
ПРАВИЛО ЛОККА
 — правило, формулируемое так: если некото­рое свойство A принадлежит любому, но фиксированному элементу изучаемого множества М (т.е. является параметром), то это свойство принадлежит и всем элементам данного множества. Символически оно записывается так:
А(а)
" хА(х)
Над чертой в посылке А(а) указывается принадлежность свой­ства А любому, но фиксированному элементу а некоторого множе­ства, под чертой, т.е. в заключении, говорится о том, что свойство А принадлежит всем элементам этого множества. П. Л. широко исполь-


[274]
зуется в логико-математических системах. Оно часто истолковыва­ется как правило обобщения и обосновывает, например, почему мы можем доказывать теоремы в геометрии, имеющие общий харак­тер, на индивидуальном чертеже. Так, доказывая теорему о том, что сумма внутренних углов треугольника равна двум прямым, мы пользуемся некоторым треугольником ABC, нарисованным на доске. Этот треугольник, однако, рассматривается нами как любой треу­гольник, поскольку от длины сторон, величины его углов, от его площади мы отвлекаемся: они не принимаются во внимание нами при доказательстве нашей теоремы. Этот треугольник выступает как параметр а. Доказывая, что ему принадлежит свойство А (а именно, что сумма его внутренних углов равна двум прямым), мы тем самым доказываем принадлежность этого свойства всякому треугольнику.
ПРАГМАТИКА
 — раздел семиотики, изучающий отношения между знаковыми системами и теми, кто воспринимает, интерпрети­рует и использует их. Для исследования прагматических свойств и отношений, существенных для адекватного восприятия и понимания текстов, чисто лингвистических и логических методов часто оказы­вается недостаточно и приходится прибегать также к методам пси­хологии, психолингвистики, этологии.
ПРАВИЛО ОТДЕЛЕНИЯ, см.: Модус поненс.
ПРЕВРАЩЕНИЕ (лат. obversio) в традиционной логике
 — вид непосредственного умозаключения, характеризующегося тем, что в исходных суждениях вида A, Е, I, О (см.: Суждение) предикат Р заменяется на не-Р (т.е. на его дополнение), и наоборот, и при этом качество суждения изменяется (утвердительное суждение преобра­зуется в отрицательное, и наоборот), а его общность (т.е. количество суждения) остается прежней. Так, из истинного суждения вида "Все S суть Р" путем его П. можно получить истинное суждение вида "Ни одно S не есть не-Р" (ср.: "Все тигры — хищные животные" и "Ни один тигр не является не-хищным животным"). Из истинного суждения вида "Ни одно S не есть Р" можно путем П. получить истинное суждение вида "Все S суть не-Р" (ср.: "Ни один кит не есть рыба" и "Все киты суть не-рыбы"). Из истинного суждения вида "Некоторые S суть Р" путем П. можно получить истинное суж­дение вида "Некоторые S не суть не-Р" (ср.: "Некоторые металлы являются жидкими" и "Некоторые металлы не являются не-жидкими"). Из истинного суждения вида "Некоторые S не суть Р" путем П. можно получить истинное суждение вида "Некоторые S есть не-Р" (ср.: "Некоторые учащиеся не являются отличниками" и "Неко­торые учащиеся являются не-отличниками").
"ПРЕДВОСХИЩЕНИЕ ОСНОВАНИЯ" (лат. petitio principii)
 - ошиб­ка логическая в доказательстве, заключающаяся в том, что в качестве


[275]
аргумента (основания), обосновывающего тезис, приводится поло­жение, которое хотя и не является заведомо ложным, однако нуж­дается в доказательстве. Так, социологическое учение англ. эконо­миста и священника Т. Р. Мальтуса (1766-1834) опиралось на два основных аргумента: население растет в геометрической прогрес­сии, в то время как средства к существованию возрастают лишь в арифметической прогрессии. Оба эти аргумента были недоказанны­ми, поэтому Мальтус совершал ошибку П. о. Ошибка стала явной, когда было показано, что население растет гораздо медленнее, чем предполагал Мальтус, а объем средств к существованию, напротив, возрастает намного быстрее.
ПРЕДИКАТ (от лат. praedicatum - сказанное)
 - языковое выра­жение, обозначающее какое-то свойство или отношение. П., указы­вающий на свойство отдельного предмета (например, "быть зеленым"), называется одноместным. П., обозначающий отношение, назы­вается двухместным, трехместным и т.д., в зависимости от числа членов данного отношения ("любит", "находится между" и т.д.).
В традиционной логике П. понимался только как свойство, преди­кативная связь означала, что предмету (субъекту) присущ опреде­ленный признак. Это ограничение существенно ослабляло вырази­тельные возможности языка логики. В частности, в системах аксиом математических теорий всегда имеются аксиомы, невыразимые по­средством одноместных П.
В современной логике предикация рассматривается как частный случай функциональной зависимости. П. называются функции, значе­ниями которых служат высказывания. Например, выражение "... есть зеле­ный" (или "х есть зеленый") является функцией от одной перемен­ной, "... любит..." ("х любит у") — функция от двух переменных, "...находится между... и..." ("х находится между у и z") ~ функция от трех переменных и т.д. Эти выражения превращаются в высказыва­ния при соответствующей подстановке имен вместо переменных или при связывании переменных кванторами (см.: Логика предикатов).
ПРЕДЛОЖЕНИЕ
 - соединение слов, имеющее самостоятельный смысл, т.е. выражающее законченную мысль. Логика заимствует этот термин из грамматики и использует при определении высказывания как грамматически правильного П., взятого вместе с его содержани­ем. Термин "П." употребляется также в искусственном (формализо­ванном) языке логики для обозначения тех последовательностей символов, которые при их содержательной интерпретации дают П. естественного языка.
Для описания П. часто используется теория немецкого логика Г. Фреге (1848-1925), согласно которой П. является именем определен­ного рода. Как и в обычном имени, содержание П. включает смысл


 
[276]
и обозначаемый объект — денотат. Смысл П. можно охарактеризо­вать как то, что бывает усвоено, когда П. понято, или как то об­щее, что имеют два П. в различных языках, если они правильно переведены. В качестве объектов, обозначаемых П., выступают два абстрактных предмета, называемых истинностными значениями, — истина и ложь; устанавливается, что все истинные П. обозначают ис­тину, а все ложные П. обозначают ложь. Так, П. "И. С. Тургенев — автор романа "Отцы и дети"" и "Ф. М. Достоевский - автор романа "Бесы"" имеют разный смысл, но обозначают один и тот же объект — исти­ну; П. "Луна обитаема" и "Марс — спутник Фобоса", имеющие разный смысл, обозначают один и тот же объект — ложь.
Преимуществом такого взгляда на П. является возможность не­посредственного применения к ним всего того, что говорится об именах. Отождествление П. с именами определенного рода упрощает логическую теорию и придает ей единообразие. Тем не менее оно во многом представляется неестественным. Наиболее обычным упот­реблением П. является не просто называние ч.-л., скажем, абстрак­тных объектов, подобных истине и лжи, а формулировка утвержде­ний. Истолкование П. как частного случая имен заставляет считать такие разные П., как "Волга впадает в Каспийское море" и "Лоша­ди едят овес", обозначающими один и тот же объект, что явно не соответствует обычным представлениям о П.
Существуют и многие другие теории содержания П., однако ни одна из них не является общепринятой.
ПРЕДМЕТНАЯ ОБЛАСТЬ, или: Универсум рассуждения, область теории,
 — множество объектов, рассматриваемых в пре­делах отдельного рассуждения, научной теории. П. о. включает прежде всего индивиды, т.е. элементарные объекты, изучаемые теорией, а так­же свойства, отношения и функции, рассматриваемые в теории. Например, П. о. в зоологии служит множество животных, в теории чисел - нату­ральный ряд чисел, в логике предикатов — любая фиксированная область, содержащая по меньшей мере один предмет.
П. о., соединяющая в единство разнотипные объекты, изучаемые в какой-то теории, представляет собой логическую абстракцию. Допу­щение существования П.о. нетривиально, ибо в обычных рассуждени­ях далеко не всегда удается удовлетворить ему естественным образом.
ПРЕДПОЧТЕНИЙ ЛОГИКА
 - логика сравнительных оценок, вы­ражаемых при помощи понятий "лучше", "хуже", "равноценно", на­зываемых предпочтениями.
Логическое исследование сравнительных оценок началось в кон­це 40-х годов этого века в связи с попытками установить формаль­ные критерии разумного (рационального) предпочтения. В качестве


[277]
самостоятельного раздела модальной логики П. л. начала развиваться после работ Г. X. фон Вригта.
В П. л. принимается, что "лучше" и "хуже" взаимно определимы: один объект лучше другого в том и только том случае, когда второй хуже первого. Например: "Здоровье лучше болезни" равносильно "Бо­лезнь хуже здоровья". Равноценное определяется как не являющееся ни лучшим, ни худшим ("Бронзовая скульптура равноценна мрамор­ной, только если бронзовая скульптура не лучше мраморной и не хуже ее"). Равноценными могут быть и хорошие, и плохие объекты.
В числе законов П. л. положения:
>> ничто не лучше самого себя;
>> если одно лучше другого, то неверно, что второе лучше первого ("Если троллейбус лучше автобуса, то неверно, что автобус лучше троллейбуса");
>> ничто не может быть и лучше, и хуже другого ("Неверно, что зима лучше лета и вместе с тем зима хуже лета");
>> если первое лучше второго, а второе равноценно третьему, то первое лучше третьего;
>> все равноценно самому себе;
>> если первое равноценно второму, а второе — третьему, то пер­вое равноценно третьему, и т.п.
В П. л. принимается обычно принцип аксиологической полноты для сравнительных оценок: любые два объекта таковы, что один из них или лучше другого, или хуже, или они равноценны. Этот принцип опирается на допущение, что множество вещей, цен­ность которых может сравниваться, охватывает все мыслимые вещи. Очевидно, однако, что сопоставляться на предмет предпочтения мо­гут не любые объекты. Скажем, быть простым числом не лучше и не хуже, чем быть совершенным числом, но это не означает, что простое и совершенное числа в каком-то смысле равноценны. Объекты, по­добные числам или геометрическим фигурам, лежат, по всей вероят­ности, вне области наших предпочтений. Принцип аксиологической полноты не является, таким образом, подлинно универсальным, приложимым к любым совокупностям объектов.
Неочевидна также универсальность законов, подобных такому: неверно, что наличие какого-то объекта лучше его отсутствия и вме­сте с тем отсутствие его лучше, чем наличие. Законами этого типа предполагается непротиворечивость множества принимаемых нами предпочтений. Хорошо известно, однако, что реальные совокупности оценок нередко бывают непоследовательными. Принятие условия непротиворечивости ограничивает применимость П. л. внутренне пос­ледовательными системами оценок.


 
[278]
Для некоторых типов предпочтений справедлив закон тран­зитивности: если первое лучше второго, а второе лучше третьего, то первое лучше третьего. В общем же случае предпочтение не является транзитивным (переходным). Например, если кто-то предпочитает лимону апельсин, а апельсину яблоко, то из этого не вытекает, как кажется, что он предпочитает также лимону яблоко. Отказ от закона транзи­тивности имеет несколько неожиданное следствие. Человек, не сле­дующий в своих предпочтениях этому закону, лишается возможнос­ти выбрать наиболее ценную вещь из неравноценных. Если он пред­почитает лимону апельсин, апельсину - яблоко и вместе с тем предпочитает лимон яблоку, то какую бы из этих трех вещей он ни избрал, всегда останется вещь, предпочитаемая им самим выбранной. Если предположить, что разумный выбор - это выбор, дающий наи­более ценную альтернативу из всех имеющихся, то соблюдение закона транзитивности окажется необходимым условием разумности выбора.
П. л. находит интересные применения в экономической теории, в этике и в других дисциплинах.
ПРЕДСКАЗАНИЕ
 — вывод о существовании неизвестных ранее фактов, объектов или их свойств, связей между явлениями, сделан­ный на основе теоретических представлений. Всякая научная теория возникает на основе некоторых известных фактов и создается для их объяснения. Однако, наряду с объяснением известного, научная теория всегда предсказывает и нечто неизвестное, т.е. утверждает существование явлений, о которых мы не подозревали до возникно­вения теории. Например, теория Коперника предсказала годичный па­раллакс звезд, периодическая система Менделеева предсказала су­ществование целого ряда новых химических элементов, социальная теория Маркса предсказала пролетарскую революцию и т.п.
Наряду с описанием и объяснением, П. является одной из важ­нейших функций научно-теоретического знания. Именно в П. выра­жается эвристическая мощь науки, которая за последние 500 лет расширила наш мир до размеров метагалактики, наполнила его вол­нами электромагнитных излучений, разрушила казавшийся недели­мым атом и открыла целый мир элементарных частиц. Конечно, не все П. оказываются истинными, но всякое истинное П. расширяет и обогащает наши представления о мире.
ПРЕСКРИПТИВНОЕ ВЫСКАЗЫВАНИЕ, см.: Нормативное выс­казывание.
ПРИВЕДЕНИЕ К АБСУРДУ, или: Редукция к абсурду, приведение к нелепости (лат. reductio ad absurdum),
 — рас­суждение, показывающее ошибочность какого-то положения путем выведения из него абсурда, т.е. противоречия. Если из высказывания


[279]
А выводится как высказывание B, так и его отрицание, то верным является отрицание A. Например, из высказывания "Треугольник — это окружность" вытекает как то, что треугольник имеет углы (так как быть треугольником значит иметь три угла), так и то, что у него нет углов (поскольку он окружность); следовательно, верным явля­ется не исходное высказывание, а его отрицание "Треугольник не является окружностью".
Закон П. к а. с применением символики логической (р, q — некото­рые высказывания; —> импликация, "если, то"; ~ отрицание, "не­верно, что") представляется формулой:
(р -> q) -> ((р -> ~ q) -> ~ р),
если (если р, то q), то (если (если р, то не-q), то не-р).
Частный закон приведения к абсурду
 представля­ется формулой:
(р -> р) -> ~ р,
если (если р, то не-р), то не-р. Например, из положения "Всякое правило имеет исключения", которое само является правилом, вытекает выс­казывание "Есть правила, не имеющие исключений"; значит, после­днее высказывание истинно. В романе И. С. Тургенева "Рудин" име­ется такой диалог: "— Стало быть, по-вашему, убеждений нет? - Нет и не существует. — Это ваше убеждение? — Да. — Как же вы говори­те, что их нет? Вот вам уже одно на первый случай". Ошибочному мнению, что никаких убеждений нет, противопоставляется его отри­цание: есть по крайней мере одно убеждение, а именно — что убеж­дений нет. Коль скоро утверждение "Убеждения существуют" выте­кает из своего собственного отрицания, это утверждение, а не его отрицание, является истинным.
ПРИМЕР
 — факт или частный случай, используемый в качестве отправного пункта для последующего обобщения и для подкрепления сделанного обобщения. "Далее я говорю, — пишет философ XVIII в. Дж. Беркли, — что грех или моральная испорченность состоят не во внешнем физическом действии или движении, но во внутреннем от­клонении воли от законов разума и религии. Ведь убиение врага в сражении или приведение в исполнение смертного приговора над преступником, согласно закону, не считаются греховными, хотя внеш­нее действие здесь то же, что и в случае убийства". Здесь приводятся два П. (убийство на войне и в исполнение смертного приговора), при­званные подтвердить общее положение о грехе или моральной ис­порченности. Использование фактов или частных случаев в качестве П. нужно отличать от использования их в качестве иллюстрации или образа. Выступая в качестве П., частный случай делает возможным


[280]
обобщение, в качестве иллюстрации он подкрепляет уже установ­ленное положение, в качестве образца он побуждает к подражанию.
В случае П. рассуждение идет по схеме: "если первое, то второе; второе имеет место; значит, первое также имеет место". Данное рас­суждение от утверждения следствия условного высказывания к ут­верждению его основания не является правильным дедуктивным умозаключением. Истинность посылок не гарантирует истинности выводимого из них заключения; в случае истинности посылок об истинности заключения можно говорить только с какой-то вероят­ностью. Рассуждение на основе П. не доказывает сопровождаемое П. положение, а лишь подтверждает его, делает его более вероятным, или правдоподобным. Чаще всего рассуждение, использующее П., проте­кает по схеме: "если всякое S есть Р, то S1 есть Р, S2 есть Р и т.д.; S1 есть Р, S2 есть P и т.д.; значит, всякое S есть Р". Это схема индуктив­ного (правдоподобного) рассуждения. П. обладает, однако, рядом осо­бенностей, выделяющих его из числа всех тех фактов и частных случаев, которые привлекаются для подтверждения общих положе­ний и гипотез. П. более убедителен или более весом, чем остальные факты и частные случаи. Он представляет собой не просто факт, а типический факт, т.е. факт, обнаруживающий определенную тенден­цию. Типизирующая функция П. объясняет широкое его использо­вание в процессах аргументации, в особенности в гуманитарной и практической аргументации, а также в повседневном рассуждении.
П. может использоваться только для поддержки описательных утверждений и в качестве отправного пункта для описательных обоб­щений. П. не способен поддерживать оценки и утверждения, которые, подобно нормам, клятвам, обещаниям, рекомендациям, декларациям и т.п., тяготеют к оценкам. П. не может служить и исходным материа­лом для оценочных и подобных им утверждений. То, что иногда представляется в качестве П., призванного как-то подкрепить оцен­ку, норму и т.п., на самом деле является не П., в образцом. Отличие П. от образца существенно: П. представляет собой описание, в то время как образец является оценкой, относящейся к какому-то частному случаю и устанавливающей частный стандарт, идеал и т.п.
Цель П. — подвести к формулировке общего положения и в ка­кой-то мере быть доводом в поддержку последнего. С этой целью связаны критерии выбора П. Прежде всего избираемый в каче­стве П. факт или частный случай должен выглядеть ясным и нео­споримым. Он должен также достаточно отчетливо выражать тен­денцию к обобщению. С требованием тенденциозности или типич­ности, фактов, берущихся в качестве П., связана рекомендация перечислять несколько однотипных П., если, взятые поодиночке,


[281]
они не подсказывают с нужной определенностью направление пред­стоящего обобщения или не подкрепляют уже сделанное обобщение. Если намерение аргументировать с помощью П. не объявляется от­крыто, сам приводимый факт и его контекст должны показывать, что слушатели имеют дело именно с П., а не с описанием изолиро­ванного явления, воспринимаемым как простая информация. Собы­тие, используемое в качестве П., должно восприниматься если и не как обычное, то, во всяком случае, как логически и физически воз­можное. Если это не так, то П. просто обрывает последовательность рассуждения и приводит как раз к обратному результату или коми­ческому эффекту. П. должен подбираться и формулироваться таким образом, чтобы он побуждал перейти от единичного или частного к общему, а не от частного опять-таки к частному.
Особого внимания требует противоречащий П. Обычно счи­тается, что такой П. может использоваться только при опровержении ошибочных обобщений, их фальсификации. Если выдвигается общее положение "Все лебеди белые", то П. с черными лебедями, живущи­ми в Австралии, способен опровергнуть данное общее положение. Рассуждение идет по схеме: "Все S есть Р, но Sn не есть Р, следова­тельно, некоторые S не есть Р". Однако противоречащий П. нередко используется и иначе: он вводится с намерением воспрепятствовать неправомерному обобщению и, демонстрируя свою несовместимость с ним, подсказать то единственное направление, в котором может идти обобщение. Задача противоречащего П. в этом случае не фальсифика­ция какого-то общего положения, а выявление такого положения.
Иногда высказывается мнение, что П. должен приводиться до формулировки того обобщения, к которому он подталкивает и кото­рое он поддерживает. Вряд ли это мнение оправданно. Порядок из­ложения не особенно существен для аргументации с помощью П. Он может предшествовать обобщению, но может также следовать за ним. Функция П.: подтолкнуть мысль к обобщению и подкрепить это обобщение конкретным и типичным П. Если упор делается на то, чтобы придать мысли движение и помочь ей по инерции прийти к обобщающему положению, то П. обычно предшествует обобще­нию. Если же на первый план выдвигается подкрепляющая функ­ция П., то, возможно, его лучше привести посте обобщения. Одна­ко эти две задачи, ставшие перед П., настолько тесно связаны, что разделение их и тем более противопоставление, отражающееся на последовательности изложения, возможно только в абстракции. Ско­рее здесь можно говорить о другом правиле, связанном со сложнос­тью и неожиданностью того обобщения, которое делается на основе П. Если оно является сложным или просто неожиданным для аудито-


 
[282]
рии, лучше подготовить его введение предшествующим ему П. Если обобщение в общих чертах известно слушателям и не звучит для них парадоксом, то П. может следовать за его введением в изложение.
ПРИНЦИП ВЗАИМОЗАМЕНИМОСТИ
 - один из трех основных принципов теории отношения именования (обозначения) Фреге — Рассела. Согласно П. в., если два выражения имеют один и тот же денотат, то одно из них можно заменять другим, причем предложе­ние, в котором производится такая замена, сохраняет свое истиннос­тное значение, т.е. если оно было истинным, то и остается истинным. Например, два выражения "Александр Пушкин" и "автор "Повестей Бел­кина"" обозначают одного и того же человека, поэтому в предложе­нии "Александр Пушкин был убит на дуэли в 1837 г." первое мож­но заменить вторым: "Автор "Повестей Белкина" был убит на дуэ­ли в 1837 г.", и предложение останется истинным.
П. в. служит для отличения экстенсиональных контекстов от интенсиональных. Для первых важно только предметное значение выражений (их "объем"), поэтому выражения с одним и тем же денотатом отождествляются, т.е. П.в. справедлив. В интенсио­нальных контекстах учитывается также смысл выражений, поэтому П. в. нарушается: замена выражений с одним денотатом может сде­лать истинное предложение ложным, если эти выражения имеют разный смысл. Например, если в истинном предложении "Н. не знал, что Александр Пушкин был автором "Повестей Белкина"" выражение "автор "Повестей Белкина"" заменим выражением "Александр Пуш­кин", которое имеет тот же самый денотат, то получим очевидно ложное предложение: "Н. не знал, что Александр Пушкин был Алек­сандром Пушкиным" (см.: Имя, Обозначения отношение).
ПРИНЦИП МНОГОЗНАЧНОСТИ
 - положение, в соответствии с которым всякое высказывание имеет одно (и только одно) из трех или более истинностных значений. П. м. лежит в основе многозначной логики и противопоставляется лежащему в фундаменте классичес­кой логики двузначности принципу. Согласно последнему, всякое высказывание является либо истинным, либо ложным, т.е. прини­мает одно из двух возможных истинностных значений — "истинно" и "ложно". П. м. говорит, что высказывание имеет одно из п значе­ний истинности, где и больше двух и может быть как конечным, так и бесконечным.
Первыми логическими системами, опирающимися на П. м., были трехзначная логика Я. Лукасевича (1920 г.) и n-значная логика Э. Поста (1921 г.), в которой высказываниям приписыва­лись значения из конечного множества натуральных чисел 1, 2, ..., п, где п больше единицы и конечно.


[283]
Введение в логику многозначных систем с особой остротой по­ставило проблему содержательно ясной интерпретации формальных логических построений. Как только допускается более двух значе­ний истинности, встает вопрос: что, собственно, означают промежу­точные между истиной и ложью значения? Если истина понимается как соответствие мысли действительному положению дел, то суще­ствуют ли вообще высказывания, не являющиеся ни соответствую­щими действительности, ни несоответствующими ей? Введение про­межуточных значений истинности изменяет смысл самих понятий истины и лжи. Поэтому нужно не просто говорить о придании смысла промежуточным значениям истинности, но и о переистолковании данных двух понятий. Истина и ложь, как они понимаются в клас­сической двузначной логике, несовместимы с допускаемыми П. м. дополнительными значениями истинности.
Несмотря на большое число предложенных многозначных систем и предпринятых попыток их содержательного обоснования, идея, что логика, предполагающая более двух значений истинности, не являет­ся "формальным упражнением", все еще не кажется бесспорной.
Обычно предполагается, что в случае допущения более двух значе­ний истинности крайними значениями являются "явная истина" и "явная ложь", а промежуточные значения представляют постепенно убывающие градации истины и постепенно возрастающие градации лжи. В предельном случае трехзначной логики промежуточное между "истинно" и "ложно" значение истолковывается как некоторая "нео­пределенность" ("возможность", "проблематичность" и т.п.), равноот­стоящая от обоих, достаточно ясных и определенных полюсов.
Имеется и другой возможный подход к обоснованию много­значной логики и лежащего в ее основе П. м. Можно считать, что между истиной и ложью нет никаких промежуточных значений и что многозначная логика имеет дело не с "расщеплением" истины на систему выделенных значений и лжи — на систему невыделен­ных, а с некоторыми дополнительными характеристиками высказы­ваний, отличными от их истинностных значений. В этом случае нет необходимости настаивать на том, что наряду с истиной и ложью имеются иные истинностные значения. Всякое высказывание явля­ется либо истинным, либо ложным, но многозначная логика, в отли­чие от двузначной, стремится учесть не только это обстоятельство, но и особенности той области, в которой истинно высказывание, ме­тод, с помощью которого устанавливается его истинность и т.д.
Например, А. Роузом была построена девятизначная логика, в которой геометрическим высказываниям приписываются значения: 1 — "ис­тинно в геометриях Евклида, Римана и Лобачевского", 2 - "истинно


 
[284]
в геометриях Евклида и Римана, но ложно в геометрии Лобачевс­кого", 3 — "истинно в геометриях Евклида и Лобачевского, но ложно в геометрии Римана" и т.д. Этой многозначной логикой не предполагается, что, помимо истины и лжи, имеются еще какие-то значения истинности.
Еще одним примером такого рода является четырехзначная ло­гика, в которой высказывания делятся не только на истинные и ложные, но также на чисто абстрактные, или математические, и конкретные, содержащие ссылку на некоторые эмпирические объекты. Значение 1 приписывается истинному абстрактному высказыванию, 2 — истинному конкретному, 3 — ложному конкретному и 4 — лож­ному абстрактному.
Изучение логических систем, опирающихся на П. м., и сопостав­ление их с классической двузначной логикой показало, что ни дву­значности принцип, ни П. м., лежащие в основе отдельных логических систем, не составляют фундамента логики. Двузначность и много­значность — всего лишь отдельные характеристики определенных логических систем, не раскрывающие всего своеобразия последних, а иногда даже не схватывающие существенных их черт. Логика в це­лом не является ни двузначной, ни многозначной.
ПРИНЦИП ОБЪЕМНОСТИ (экстенсиональности) (от лат. extentio — протяжение)
 — принцип теории множеств, суть которого в том, что два множества (класса), состоящие из одних и тех же элементов, равны (совпадают, являются равнообъемными). Применительно к логике П. о. можно сформулировать так: два предиката (свойства, отношения, понятия) могут быть отождествлены друг с другом (являются неразличимыми в определенном смысле), коль скоро они имеют один и тот же объем. Так, множества, соответствующие пре­дикатам (и соответствующим им понятиям) "равносторонние пря­моугольники" и "равноугольные ромбы", одни и те же: они пред­ставляют собой множество квадратов. Эти понятия можно отожде­ствлять между собой, сделать неразличимыми в отношении доказательства теорем. В классической логике широко используется этот принцип. Но в опытных науках П.о. постоянно нарушается: приходится различать равнообъемные понятия по свойствам, кото­рые в них зафиксированы. Эти свойства могут быть существенны­ми и несущественными, более существенными и менее существен­ными для решения различных задач. Так, два понятия - "животное, способное производить орудия труда" и "животные, обладающие мягкой мочкой уха" - равнообъемны: они выделяют, специфициру­ют один и тот же класс - класс людей. Но во многих случаях мы не можем их отождествлять, например, когда пытаемся дать определение человека как общественного существа. Из двух определений "Чело-


[285]
век есть животное, способное производить орудия труда" и "Чело­век есть животное, обладающее мягкой мочкой уха" мы безусловно выберем первое и отвергнем второе.
ПРИНЦИП ОДНОЗНАЧНОСТИ
 - один из трех основных прин­ципов теории отношения именования (обозначения). Согласно П.о. всякое выражение (имя) должно иметь только один денотат, т.е. обозначать только один предмет, класс предметов или свойство. П.о. исключает омонимию, т.е. обозначение одним словом разных ве­щей, например: ключ от квартиры и ключ в лесу, из которого пьют (см.: Имя, Обозначения отношение).
ПРИНЦИП ПРЕДМЕТНОСТИ
 - один из трех основных принци­пов теории отношения именования (обозначения) Фреге — Рассела. Согласно П.п. всякое предложение говорит о денотатах входящих в него выражений. Например, предложение "В России много крупных озер" говорит о нашей Родине и об озерах, а не о словах, их обозначающих. П.п. кажется достаточно очевидным, однако, когда нам приходится говорить о самих языковых выражениях, возможна путаница: сме­шение выражений с их денотатами (см.: Имя, Автонимное употреб­ление выражений).
ПРИЧИННАЯ СВЯЗЬ
 — физически необходимая связь между яв­лениями, при которой за одним из них всякий раз следует другое. Первое явление называется причиной, второе — действием или следствием. Понятие "П. с." — одно из тех понятий, без ссылки на которое обходится только редкое из наших рассуждений. Знание явлений — это прежде всего знание их возникновения и развития. В старину между стенами здания, подлежащего сносу, поме­щали прочный железный стержень и разводили под ним костер. От нагревания стержень удлинялся, распирая стены, и они развалива­лись. Нагревание здесь причина, расширение стержня - ее следствие. Камень попадает в окно, и оно разлетается на осколки. Молния уда­ряет в дерево, оно раскалывается и обугливается. Извергается вулкан, пепел засыпает многометровым слоем город, и он гибнет. Начинает­ся дождь, и на земле через некоторое время образуются лужи. Во всех этих случаях одно явление — причина — вызывает, порождает, производит и т.п. другое явление — свое следствие.
П. с. не дана в опыте, ее можно установить только посредством рассуждения. В логике разработаны определенные методы прове­дения таких рассуждений, получившие название канонов, или методов, индукции. Первая формулировка этих методов была дана еще в начале XVII в. англ. философом Ф. Бэконом. Систематически они были исследованы в прошлом веке англ. философом и логиком Д. С. Миллем. Отсюда их наименование — "каноны (методы) Бэкона — Милля".


 
[286]
Методы индукции опираются на определенные свойства при­чинной связи.
(1) Причина всегда предшествует во времени следствию. Основываясь на этом свойстве, мы всегда ищем причину интересу­ющего явления только среди тех явлений, которые предшествовали ему, и не обращаем внимания на все, что случилось позднее.
(2) П. с. необходима: всякий раз, когда есть причина, неиз­бежно наступает и следствие. Необходимость, присущая П. с., являет­ся физической необходимостью, присущей законам природы и наз. также онтологической, или каузальной, необходимостью. Физичес­кая необходимость, как принято считать, слабее логической необходи­мости, присущей законам логики: логически необходимое является также физически необходимым, но не наоборот.
(3) Причина не только предшествует следствию и всегда сопро­вождается им, она порождает и обусловливает следствие. Поня­тие "порождения" не является ясным и носит во многом антропо­морфный характер, но без него нельзя однозначно охарактеризовать П. с. Без него не удается, в частности, отличить причину от повода, т.е. события, непосредственно предшествуюшего другому событию, делающему возможным его наступление, но не порождающему и не определяющему его. Допустим, на нитке подвешен камень. Нитка перерезается, камень падает. Ясно, что перерезание нитки - только повод, а причина - земное притяжение. Если бы камень лежал на полу или находился в состоянии невесомости, он, лишенный подвес­ки, все-таки не упал бы. Понятие порождения необходимо и для отличения П.с. от постоянного следования явлений друг за другом, не являющегося причинным. День постоянно и с физической необ­ходимостью наступает после ночи, но ночь не порождает день и потому не является его причиной.
(4) Для П. с. характерно, что с изменением интенсивности или силы действия причины соответствующим образом меняется и интенсивность следствия.
(5) Причинность, наконец, всеобща: нет и не может быть бес­причинных явлений; все в мире возникает только в результате дей­ствия определенных причин. Это - т. наз. закон, или принцип, при­чинности, требующий естественного объяснения явлений приро­ды и общества и исключающий их объяснение с помощью каких-то сверхъестественных сил.
Логические связи утверждений о П. с. исследуются логикой при­чинности, возникшей в 50-е годы этого века.
ПРИЧИННОСТИ ЛОГИКА
 - раздел современной логики, зани­мающийся исследованием структуры и логических отношений высказываний о причинных связях явлений (каузальных высказы-


[287]
ваний). Понятие причинности является одним из центральных как в науке, так и в философии науки. Причинная связь не является логическим отношением. Но то, что причинность несводима к логи­ке, не означает, что проблема причинности не имеет никакого ло­гического содержания и не может быть проанализирована с помо­щью логики. Задача логического анализа причинности заключается в систематизации тех правильных схем рассуждений, посылками или заключениями которых служат каузальные высказывания. В этом плане П. л. ничем не отличается, скажем, от логики времени или логики знания, целью которых является построение искусственных (формализованных) языков, позволяющих с большей ясностью и эффективностью рассуждать о времени или знании.
В П. л. связь причины и следствия представляется особым услов­ным высказыванием — каузальной импликацией. Последняя иногда принимается в качестве исходного, неопределяемого явным образом понятия. Смысл ее задается множеством аксиом. Чаще, од­нако, такая импликация определяется через другие, более ясные или более фундаментальные понятия. В их числе понятие онтоло­гической (каузальной, или фактической) необходимости, по­нятие вероятности и др.
Необходимость логическая присуща законам логики, онтологи­ческая необходимость характеризует закономерности природы и, в частности, причинные связи. Выражение "A есть причина В" ("А каузально имплицирует B") можно определить как "онтологически необходимо, что если A, то В", отличая тем самым простую услов­ную связь от каузальной импликации.
Через вероятность причинная связь определялась так: событие A есть причина события В, только если вероятность события A больше нуля, оно происходит раньше В и вероятность наступления В при наличии A выше, чем просто вероятность В.
Понятие причинной связи определялось и с помощью понятия закона природы: A каузально влечет В, только если из A не вытека­ет В, но из А, взятого вместе с множеством законов природы, логически следует В. Смысл этого определения прост: причинная связь не является логической, следствие вытекает из причины не в силу законов логики, а на основании законов природы.
Для причинной связи верны, в частности, утверждения:
>> ничто не является причиной самого себя;
>> если одно событие есть причина второго, то второе не является причиной первого;
>> одно и то же событие не может быть одновременно как при­чиной наличия какого-то события, так и причиной его отсутствия;
>> нет причины для наступления противоречивого события и т.п.


 
[288]
Слово "причина" употребляется в нескольких смыслах. Наиболее сильный из них предполагает, что имеющее причину не может не быть, т.е. не может быть ни отменено, ни изменено никакими собы­тиями или действиями. Наряду с этим понятием полной, или необходимой, причины существует также более слабое понятие частичной, или неполной, причины. Для полной причины выполняется условие: "Если событие А каузально имплицирует со­бытие В, то А вместе с любым событием С также каузально импли­цирует B". Для неполной причины верно, что в случае всяких собы­тий а и В, если А есть частичная причина В, то существует такое событие С, что А вместе с С является полной причиной В, и вместе с тем неверно, что А без С есть полная причина В. Иначе говоря, полная причина всегда, или в любых условиях, вызывает свое след­ствие, в то время как частичная причина только способствует на­ступлению своего следствия, и это следствие реализуется лишь в случае объединения частичной причины с иными условиями.
П.л. строится так, чтобы в ее рамках могло быть получено описа­ние и полных, и неполных причин. П. л. находит приложения при обсуждении понятий закона природы, онтологической необходимо­сти, детерминизма и др.
ПРОБЛЕМА (от греч. problema — преграда, трудность, задача)
 — вопрос или целостный комплекс вопросов, возникший в ходе по­знания. Не каждая П., однако, сразу же приобретает вид явного вопроса, так же как не всякое исследование начинается с выдви­жения П. и кончается ее решением. Иногда П. формулируется одно­временно с ее решением, случается даже, что она осознается только через некоторое время после ее решения. Зачастую поиск П. сам вырастает в особую П.
В широком смысле проблемная ситуация — это всякая ситуация, теоретическая или практическая, в которой нет соответ­ствующего обстоятельствам решения и которая заставляет поэтому остановиться и задуматься.
От П. принято отличать псевдопроблемы — вопросы, обла­дающие лишь кажущейся значимостью и не допускающие сколь-нибудь обоснованного ответа. Между П. и псевдопроблемами нет, однако, четкой границы.
Из многочисленных факторов, оказывающих влияние на способ постановки П., особое значение имеют, во-первых, характер мыш­ления той эпохи, в которую формируется и формулируется П., и, во-вторых, уровень знания о тех объектах, которых касается возник­шая П. Каждой исторической эпохе свойственны свои характерные формы проблемных ситуаций; в древности П. ставились иначе, чем, скажем, в средние века или в современной науке. В хорошо проверен-


[289]
ной и устоявшейся научной теории проблемные ситуации осозна­ются по-другому, чем в теории, которая только складывается и не имеет еще твердых оснований.
Основы логико-семантического истолкования П. были заложены в работах математика А. Н. Колмогорова (1903-1985), С. К. Клини и др. Согласно Колмогорову, возможна логика, систематизирующая схе­мы решения задач. Понятия "задача" и "решение задачи" принима­ются в качестве исходных; логические задачи истолковываются как операции, позволяющие получать новые задачи из уже имеющихся задач. (А и В) означает задачу: решить обе задачи А и В; (А или В) — решить хотя бы одну из задач A, В; (если А, то В) означает задачу: свести задачу В к задаче A; (не-А) означает задачу: предположив, что дано решение A, прийти к противоречию.
Одной из форм П. является неразрешимая П.: ее "решени­ем" выступает доказательство ее неразрешимости. Например, разрешения П. для логики предикатов первого порядка неразрешима: не суще­ствует эффективной процедуры, которая позволяла бы для всякой формулы определить, является она теоремой или нет. Доказательство этого факта, данное в 1936 г. амер. логиком А. Чёрчем (р. 1903), дало первый пример неразрешимой П.
ПРОПОЗИЦИОНАЛЬНАЯ СВЯЗКА
 - операция, позволяющая из данных суждений (высказываний) строить новые суждения (выс­казывания). В логике высказываний высказывания (формулы) рас­сматриваются лишь с точки зрения их истинности или ложности. Если A и В - к.-л. формулы (простые, элементарные или сложные, построенные из элементарных), то из них с помощью П. с. могут строиться новые формулы: А & В, AvB, A-> B, А = В, если А - формула, то ~А - также формула. Символы "&", "v", "->", "=", "~" выража­ют П. с., которые определяются на семантическом, содержательно-алгоритмическом уровне при помощи таблиц истинности. Эти П. с. соответственно называются: конъюнкцией, дизъюнкцией, импликаци­ей, эквиваленцией, отрицанием. Смысл П. с. в русском языке переда­ется при помощи следующих выражений:
конъюнкция - с помощью союзов "и", "а", "но", "хотя" и др.;
дизъюнкция (нестрогая) — с помощью выражений: "или", "или, или оба";
импликация — с помощью выражений "если..., то", "влечет", "сле­дует" (ср.: "Если А, то В", "А влечет В", "Из А следует В");
эквиваленция - с помощью выражений "эквивалентно", "равно­сильно", "тогда и только тогда", "если и только если";
отрицание — с помощью выражений "не", "неверно, что".
ПРОПОЗИЦИОНАЛЬНАЯ ФУНКЦИЯ
 - функция, область значе­ний которой составляют высказывания, обладающие определенным


 
[290]
истинностным значением. По своей структуре П. ф. сходна с грамма­тическим предложением, но отличается от последнего наличием пе­ременных, которые пробегают какое-то множество объектов; П. ф. ставит в соответствие этим объектам высказывания.
Примером П. ф. может служить выражение "х есть простое чис­ло". Имея форму грамматического предложения, оно не является высказыванием: о нем нельзя сказать, что оно истинно или лож­но, его нельзя доказать или опровергнуть. Из этого выражения в результате замены переменной х некоторым числом получается выс­казывание. Если вместо переменной подставить число 11, получит­ся истинное высказывание, если 8 — ложное. Несколько более сложным выражением, содержащим переменные и превращающимся при замене этих переменных постоянными в высказывание, является формула x + у = 10.
Роль переменных в П. ф. можно сравнить с ролью пробелов, оставляемых в опросном бланке: такой бланк приобретает опреде­ленное содержание только после заполнения пробелов. Точно так же П.ф. превращается в высказывание лишь после того, как перемен­ные заменены в ней постоянными.
В обычном языке переменные не встречаются, но есть конструк­ции, напоминающие их, например "кто-то" и "какой-то" служат имена­ми неопределенных людей. Из выражения "Кто-то первым достиг Южного полюса" получается истинное высказывание, если подста­вить имя "Амундсен", и ложное при подстановке имени "Скотт". Употребление переменных не столь существенно отличается, таким образом, от некоторых конструкций обычного языка.
Из П. ф. высказывание может быть получено не только путем замены переменных постоянными, но и с помощью кванторов. Так, из выражения "х есть отец у", используя кванторы "все" и "некото­рый" ("существует"), можно получить истинное высказывание "Для всякого у существует такой х, что есть отец у" ("Всякий человек имеет отца") или ложное высказывание "Существует х, являющий­ся отцом всякого у" ("Есть человек, являющийся отцом каждого").
Термин "П. ф." введен в логику англ. философом и логиком Б. Расселом (1872-1970).
ПРОТИВОПОЛОЖНОСТЬ ЛОГИЧЕСКАЯ
 – вид отношения между противоположными понятиями или суждениями в традиционной логике. В отношении противоположности находятся такие несовмес­тимые понятия, объемы которых включаются в объем более широко­го, родового понятия, но не исчерпывают его полностью, например "белый — черный", "сладкий — горький", "высокий - низкий" и т.п. Если последнюю пару понятий отнести к людям, то класс "люди"


[291]
можно разбить на три части: "высокие" — "среднего роста" — "низ­кие". Противоположные понятия "высокий" — "низкий" займут наи­более удаленные друг от друга части объема родового понятия, но не покроют его целиком.
В отношении противоположности находятся общеутверди­тельные и общеотрицательные суждения, говорящие об одном и том же классе предметов и об одном и том же свойстве, например: "Всякий человек добр" и "Ни один человек не добр". Такие суждения вместе не могут быть истинными, однако они оба могут оказаться ложными (как это имеет место в приведенном примере).
ПРОТИВОПОСТАВЛЕНИЕ ПРЕДИКАТУ
 - вид непосредственно­го умозаключения, в котором субъектом вывода является понятие, противоречащее предикату посылки, предикатом является субъект посылки, а связка изменяется на противоположную символически:
S есть Р.
не-Р не есть S.
П. п. представляет собой соединение превращения с обра­щением, поэтому при его выполнении следует сначала произвес­ти превращение посылки, а затем обратить получившееся суждение: превращаем "S есть Р", получаем "S не есть не-Р", затем обращаем последнее суждение и приходим к выводу "не-Р не есть S". Затруд­нения здесь носят чисто грамматический характер. Чтобы избежать их, следует формулировать связку в явном виде и фиксировать отрицания. Из общеутвердительного суждения следует общеотрица­тельный вывод; из общеотрицательного суждения следует частноутвердительный вывод; из частноотрицательного суждения следует частноутвердительный вывод; из частноутвердительного суждения нельзя получить вывод путем П. п.
ПРОТИВОРЕЧИЕ
 - два высказывания, из которых одно являет­ся отрицанием другого. Например: "Латунь - химический элемент" и "Латунь не является химическим элементом", "2 - простое число" и "2 не является простым числом". В одном из противоречащих выс­казываний что-то утверждается, в другом это же самое отрицается, причем утверждение и отрицание касаются одного и того же объек­та, взятого в одно и то же время и рассматриваемого в одном и том же отношении.
П. является одним из центральных понятий логики. Поскольку слово "П." многозначно, пару отрицающих друг друга высказыва­ний называют иногда "логическим П." или абсурдом.
П. недопустимо в строгом рассуждении, когда оно смешивает истину с ложью. Но у П. в обычном языке много разных задач. Оно


[292]
может выступать в качестве основы сюжета, быть средством дости­жения особой художественной выразительности, комического эф­фекта и т.д. Реальное мышление — и тем более художественное мышление — не сводится к одной логичности. В нем важны ясность и неясность, доказательность и зыбкость, точное определение и чувственный образ и т.д., может оказаться нужным даже П., если оно стоит на своем месте.
[293]
 
 

Оглавление

 
www.pseudology.org